Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A plume model applied to radiosonde observations and the fifth generation ECMWF atmospheric reanalysis (ERA5) is used to assess the relative importance of lower-tropospheric moisture and temperature variability in the convective coupling of equatorial waves. Regression and wavenumber–frequency coherence analyses of satellite precipitation, outgoing longwave radiation (OLR), and plume model estimates of lower-tropospheric vertically integrated buoyancy (〈B〉) are used to identify the spatial and temporal scales where these variables are highly correlated. Precipitation and OLR show little coherence with 〈B〉 when zero entrainment is prescribed in the plume model. In contrast, precipitation and OLR vary coherently with 〈B〉 when “deep inflow” entrainment is prescribed, highlighting that entrainment occurring over a deep layer of the lower troposphere plays an important role in modifying the thermodynamic properties of convective plumes in the tropics. Consistent with previous studies, moisture variability is found to play a more dominant role than temperature variability in the convective coupling of the Madden–Julian oscillation (MJO) and equatorial Rossby (ER) waves, while temperature variability is found to play an important role in the convective coupling of Kelvin (KW) and inertio-gravity (IG) waves. Convective coupling is most strongly impacted by moisture variations in the 925–850- and 825–600-hPa layers for the MJO and ERs, and by 825–600-hPa temperature variations in KWs and IGs, with 1000–950-hPa moist static energy variations playing a relatively small role in convective coupling. Simulations of the Energy Exascale Earth System Model (E3SM), version 2, and a preoperational prototype of NOAA Global Forecast System (GFS) V17 are examined, the former showing unrealistically high coherence between precipitation and 1000-hPa moist static energy, the latter a more realistic relationship.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract An energy budget combining atmospheric moist static energy (MSE) and upper ocean heat content (OHC) is used to examine the processes impacting day-to-day convective variability in the tropical Indian and western Pacific Oceans. Feedbacks arising from atmospheric and oceanic transport processes, surface fluxes, and radiation drive the cyclical amplification and decay of convection around suppressed and enhanced convective equilibrium states, referred to as shallow and deep convective discharge–recharge (D–R) cycles, respectively. The shallow convective D–R cycle is characterized by alternating enhancements of shallow cumulus and stratocumulus, often in the presence of extensive cirrus clouds. The deep convective D–R cycle is characterized by sequential increases in shallow cumulus, congestus, narrow deep precipitation, wide deep precipitation, a mix of detached anvil and altostratus and altocumulus, and once again shallow cumulus cloud types. Transitions from the shallow to deep D–R cycle are favored by a positive “column process” feedback, while discharge of convective instability and OHC by mesoscale convective systems (MCSs) contributes to transitions from the deep to shallow D–R cycle. Variability in the processes impacting MSE is comparable in magnitude to, but considerably more balanced than, variability in the processes impacting OHC. Variations in the quantity of atmosphere–ocean coupled static energy (MSE + OHC) result primarily from atmospheric and oceanic transport processes, but are mainly realized as changes in OHC. MCSs are unique in their ability to rapidly discharge both lower-tropospheric convective instability and OHC.more » « less
-
Abstract This study examines thermodynamic–convection coupling in observations and reanalyses, and attempts to establish process-level benchmarks needed to guide model development. Thermodynamic profiles obtained from the NOAA Integrated Global Radiosonde Archive, COSMIC-1 GPS radio occultations, and several reanalyses are examined alongside Tropical Rainfall Measuring Mission precipitation estimates. Cyclical increases and decreases in a bulk measure of lower-tropospheric convective instability are shown to be coupled to the cyclical amplification and decay of convection. This cyclical flow emerges from conditional-mean analysis in a thermodynamic space composed of two components: a measure of “undiluted” instability, which neglects lower-free-tropospheric (LFT) entrainment, and a measure of the reduction of instability by LFT entrainment. The observational and reanalysis products examined share the following qualitatively robust characterization of these convective cycles: increases in undiluted instability tend to occur when the LFT is less saturated, are followed by increases in LFT saturation and precipitation rate, which are then followed by decreases in undiluted instability. Shallow, convective, and stratiform precipitation are coupled to these cycles in a manner consistent with meteorological expectations. In situ and satellite observations differ systematically from reanalyses in their depictions of lower-tropospheric temperature and moisture variations throughout these convective cycles. When using reanalysis thermodynamic fields, these systematic differences cause variations in lower-free-tropospheric saturation deficit to appear less influential in determining the strength of convection than is suggested by observations. Disagreements among reanalyses, as well as between reanalyses and observations, pose significant challenges to process-level assessments of thermodynamic–convection coupling.more » « less
An official website of the United States government
